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Abstract 

The structure of the grain boundary in a typical polycrystalline ceramic (MgO) 
is described in terms of a random network. The development is based on the 
existence of variable coordination of both species in the structure to permit a 
stable random network. The theory first develops the energy relationship and 
coordination distribution in such a network in a stress-free homogeneous environ- 
ment and then considers the distribution that might exist in a gradient occumng 
at a discontinuity (grain boundary or free surface). 

The results suggest that such an approach is capable of describing the condi- 
tions at disordered regions in an ordered structure. It appears that the method 
could be more rigorously developed if needed and, in that case, could be applied 
to more complex ceramics and used to describe temperature-viscosity relation- 
ships in such networks. Finally, the theory indicates that in a theoretically pure 
MgO, the thickness of the random network at a free surface would be of the 
order of 2-3 atomic distances, and the total thickness of a grain boundary, of 
the same order of magnitude. 
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A Study of the Structure of Grain Boundaries in Polycrystalline 
Magnesium Oxide 

1. Introduction sion and grain boundary thickness. Since this is a pre- 
liminary study, no effort is made to treat the forces 
between ions as rigorously as is frequently done in cal- 
culating properties of ionic materials. 

No completely satisfactory description exists for grain 
boundaries in ionic materials, either in terms of a random 
misfit of two grains or in terms of specific dislocation 
patterns. Analysis of the problem suggested that some 
of the random network ideas useful in describing silicate 
networks might have application here in describing spe- 
cifically the structure of the grain boundaries. Although 
such a network, in the absence of any glass-forming 
oxides, would normally be considered a model for a low- 
viscosity liquid with very little stability below the melt- 
ing point (or liquidus in the case of mixed oxides) it will 
be shown that such a liquid, in very thin layers between 
two crystalline grains, can have stability at temperatures 
below the melting point. Magnesium oxide has been 
selected because of the interest at the Jet Propulsion 
Laboratory in the forming and hot-pressing of this mate- 
rial and also because the simple RO-type formula simpli- 
fies analysis. However, the methods developed will be 
perfectly applicable to more complicated formulas or to 
mixed oxides. 

In these studies, an effort is made to express the ideas 
in quantitative form and to attempt to make deductions 
on orders of magnitude of such quantities as surface ten- 

II. Description of the Model 

A. The Meaning of "Random Network" 

Some single oxides, when melted and cooled, readily 
form glasses. In general, in the crystalline form of such 
oxides, each cation is surrounded by a small number of 
oxygens and each oxygen is attached to (or bridges be- 
tween) two and only two cations. Silica, for instance, in 
the high-temperature form (cristobalite), has each silicon 
surrounded by four oxygens and each oxygen bridging 
between two silicons. The silicons and the oxygens form 
six-member rings in which six silicons and six oxygens 
alternate. It is possible to rearrange this type of crystal 
structure into a random structure where each cation still 
has the same number of oxygens and each oxygen still 
bridges between two cations. One way of describing the 
randomness of such a structure would be to say that 
instead of all the rings in the structure having six silicons 
and six oxygens, some may have four, five, seven, or some 
other number arranged in a random manner. 
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The presence of such a glass-forming oxide (even in 
amounts of less than 50% in some cases) in melts contain- 
ing several oxides can still promote easy glass formation. 
One plausible way of describing the structure of such 
glasses is to assume that the cation of the glass-forming 
oxide always enters the structure with the same coordi- 
nation number, while other cations may fit into the struc- 
ture with a somewhat variable coordination number. 
Unpublished studies by one of the authors (HTS) of the 
densities of simple silicate glasses indicate that this leads 
to results consistent with measured densities of a large 
number of glasses. The larger the cation and the smaller 
its charge, the greater will be the variability of its coordi- 
nation. 

It seems a logical step to postulate that when no glass- 
forming oxide is present, it is still possible to have a 
random network by allowing each cation and each anion 
to enter into the structure with a varying coordination 
number. Figure 1 illustrates this concept in a two- 
dimensional drawing, which could very well describe 
the structure of molten magnesium oxide. The ease with 
which an ion could change its surroundings would be 
associated with the rather high fluidity characteristic of 
melts containing litle or no silica or other glass-former. 
The methods developed below could, incidentally, easily 
be extended to allow calculation of viscosities and 
their temperature dependence. This calculation is not 
attempted here. 

This random structure might aIso be used to describe 
the structure of grain boundaries in the thin layer be- 
tween two crystal grains of different orientation. One 
of the main purposes of this study is to investigate how 
such a “liquid structure could be in equilibrium with 
two crystals at a temperature below the melting point 
of the crystals. It is first necessary to develop the net- 
work model under the influence of hydrostatic conditions 

Fig. 1. Two-dimensional representation of a 
random network 

and then to consider the influence of a gradient as it 
might exist at a discontinuity. The network development 
is contained in the rest of Section 11, while the influence 
of the discontinuity is considered in Section 111. 

In order to begin to make some predictions about the 
equilibrium behavior of such a liquid, it is necessary 
to be able to calculate, for any postulated distribution 
of coordination numbers, the energy, entropy, and vol- 
ume of one mole or any other specified quantity. In all 
the calculations, the thermal energy and entropy arising 
from lattice or network vibrations are completely neg- 
lected. The temperatures are very high and most of the 
Einstein functions entering into thermal capacity calcu- 
lations are very close to unity. The differences between 
vibrational energies of two different structures (even crys- 
tal and liquid) would be small compared with differences 
in structural energies. 

B. Entropy of a Random Network 

will be considerably reduced when numerical calculations are attempted. Let there be, in one mole of MgO, 
The network will consist of an assembly of cations and anions that may have coordinations of 2 to 12. This range 

n2 

n3 

moles of cations in %fold coordinates 

moles of cations in $fold coordinates 

nI2 moles of cations in 12-fold coordinates 
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. 
and 

q2 moles of anions in 2-fold coordinates 

q3 moles of anions in 3-fold coordinates 

where 

q12 moles of anions in 12-fold coordinates 

Z n i  = 1 and q i =  1 
i i 

Then, if N is Avogadro’s number, it is assumed that the entropy S of one mole of MgO can be written 

N! 
S = kln n,N!n,N! * . . n,,N! qzN!q3N! * . qI2N! 

which, through the use of Stirling’s approximation, can be written 

or 

S = R(-nzlnn2 - n31nn3 - . . - %zInn12 - q 2 h q 2  - q31nq3 - . . * - ql21nqlz) 

where k is Boltzmann’s constant and R is the gas constant. The units will be calories per mole per degree C if R is 
expressed in these units. 

C. Energy of a Random Network Calculation of the value of + at each ion site is, for a 
crystal, an important and somewhat difficult step in the 
usual calculation of the Madelung constant of the crystal. 

Madelung constant (expressed in terms of closest cation- 

In an ionic structure, a large part of the structural 
energy is the which can be written in For crystals of the RO type, the numerical value of the 
the form 

where ej is the charge in ion i and +j is the potential at 
the site of ion i arising from all of its neighbors. This 
quantity is always negative, since the potential at each 
ion site always comes out opposite in sign to the charge 
in the ion occupying the site. The energy so described 
represents the amount by which the Coulomb energy of 
the structure is less than the energy of the ions all infi- 
nitely separated from each other. 

anion separation) is the same number as + expressed as 
a multiple of ez/r,  where e is the charge on either ion 
and r is the cation-anion separation. The assumption is 
then made that the average value of + at the site of an 
ion in a random network can be read from a curve of 
Madelung constants for known crystal structures. In order 
to get a more complete curve, a Madelung constant was 
calculated as 1.387 for a single chain of alternating posi- 
tive and negative charges (coordination 2), as 1.OOO for 
an assembly of isolated diatomic molecules (coordina- 
tion l ) ,  and as O.OO0 for a well dispersed gas of separate 
ions (coordination zero). The values used in drawing the 
curve are shown in Table 1 and are plotted in Fig. 2. 
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Table 1. Values of Madelung constant for RO-type 
structures with different coordination numbers 

Model 

Ionic gas 
Diatomic molecules 
Linear chain 
2nS 
NaCI 
CSCl 

Coordination 
number 

Madelung constant 

O.Oo0 
1 .Ooo 

1.640 

1.763 

1.387 

1.748 

That this is a valid method for calculating energies 
of a network is illustrated in Appendix A by calculating 
from these values the Madelung constant for completely 
different crystal structures, such as fluorite, rutile, and 
corundum. 

The effect of the randomness on such a calculation is 
discussed in Appendix B. 

It is not possible to discuss the “correct” coordination 
number for a cation without also introducing the high- 
order repulsion terms that also enter, since they largely 
control the number of anions surrounding a cation. If an 
exponent of 7 is used in the denominator of the repulsion 
term, then the energy per mole of each kind of ion can 
be calculated, and the results, for MgO, are as shown 
in Table 2 (counting only 6-fold, 5-fold, 4-fold, 3-fold, 
and 2-fold ions). These energies have been arbitrarily 
adjusted to make the &fold ions have zero energy. 

Table 2. Energy of ions in MgO a s  a function of 
coordination number 

Type of ion I Energy per mole, kcal 

6-fold 
5-fold 
4-fold 
3-fold 9.17 
2-fold 22.99 

The numbers in Table 2 are for the energy of mag- 
nesium ions. In the numerical calculations to follow, it 
was assumed that these numbers could also be applied 
to the oxygen ions. This is obviously incorrect, since there 
is no dficulty in putting even more than six magnesium 
ions around an oxygen ion. In a more rigorous treatment, 
the oxygens would be treated separately. The assump 
tion was made merely to simplify the calculations and 
does not represent an inherent limitation on the treat- 
ment. This will be made clearer in the treatment of the 
free energy of the network. 

2.0 

1. :  

F 
2 

cn 
2 

2 
I . (  

(3 z 
3 
J 
W 
n a 
5 

O.! 

1 2 4 6 8 

COORDINATION NUMBER 

Fig. 2. Madelung constant of RO-type crystal  
a s  a function of coordination 

number 
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. 
D. Volume of a Random Network 

A method of amving at a value for the volume of a 
random network may be borrowed from work being done 
in silicate networks. Each ion of one kind is surrounded 
by a certain number of ions of the opposite kind. If planes 
are constructed that perpendicularly bisect each of the 
straight lines from this central ion to each of its neigh- 
bors, the ion will be enclosed in a polyhedron of as many 
faces as the ion has neighbors. Every ion in the structure 
may be surrounded by such polyhedra, and they should 
account for d the space occupied by the structure. This 
holds except for ions surrounded by only two or three 
ions of the opposite kind, since the polyhedra in these 
cases are not closed. They can, however, be treated sepa- 
rately, as will be shown. 

Each polyhedron consists of a number of pyramids, 
with all their points coming together at the enclosed ion. 
In calculating the volume, these pyramids are replaced 
by right circular cones whose height from base to apex 
is one-half the bond length and whose total solid angles 
add up to &. If the number of such cones around an 
ion is n, then it can be shown that the total volume 
occupied by the n cones is 

47.d n(n- 1) 
3 (n-2)2 
- 

where r is one-half the bond length. As n increases, the 
polyhedron approaches a sphere in shape and the volume 
approaches (4xr3)/3. 

A difficulty arises in the case of ions with only two or 
three neighbors, since the polyhedron in either of these 
cases is not a closed figure. The value for a %fold ion 
was taken by considering vitreous silica, whose molar 
volume is 27.26 cm3. The volume of the silicons, in 4-fold 
coordinates, can be computed, and the difference, which 
actually accounts for most of the volume, is assigned 
to the 2-coordinated oxygens. A smooth curve joining 
this value to the other allows an interpolation giving the 
value for ions in 3-fold coordinates. The number plotted 
in this case is the factor used to multiply the cube of 
one-half the bond length to get the volume in cm3 per 
mole. 

The one-half bond length r itself varies with coordi- 
nation number. If, again, an exponent of 7 is assumed 
in the denominator of the repulsive term, then it is a 
reasonable assumption that r varies as the one-sixth power 
of the coordination number. If a value of 2.1 A is taken 
for a coordination number of 6, then the volumes for the 

different kinds of ions can be calculated as shown in 
Table 3. Again, in the interest of simplification, the cal- 
culations are assumed to apply also to the oxygen ions. 
It would probably be more correct to divide the MgO 
bond always at a fixed distance from the oxygen and 
vary the rest of the bond length according to the coordi- 
nates of the magnesium. However, for initial simplicity, 
the simple procedure described above was used. 

Table 3. Volume of ions in MgO as a function 
of coordination number 

I Coordination numbor I Volumo of ion, cm' por mol. I 
16.796 
11.907 

8.200 
6.458 
5.614 

E. Free Energy of a Random Network 

In order to understand the equilibrium behavior of 
such a body, either in the absence of stress or in the 
presence of such stress as necessarily enters at a density 
discontinuity, it is necessary to set up a free energy func- 
tion G = E  + PV - TS and minimize it by properly 
choosing the independently adjustable parameters. This 
free energy function will be kept as general as possible 
until the actual numerical calculations are attempted. 
Both the magnesium and oxygen ions will have coordina- 
tion numbers from 2 to 12. The energies of the magnesium 
ions will be denoted a2,a3,a4, * . aI2, and the, energies 
of the oxygens, a:, aG,a:, . - * ai2; the subscript denotes 
the coordination number of the ion. The volumes of the 
magnesium ions will be u2, u3, ur . . uI2, and of the oxy- 
gens, t$,uG,u:, . . * UL. The values for (Y will be in cal- 
ories per mole and those for u, in cm3 per mole. 

If pressure is measured in dynes per cmz, then the PV 
term in the free energy will be of the form 

D 

where W is the mechanical equivalent of heat in ergs 
per calorie. All energy units are then in calories per mole. 

The free energy function G can then be written 

D 
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Not all the n and q terms are independent. They satisfy 
the three relations 

1% = 1  

Z q i = 1  
i 

i 

Xini = X i 9 i  
i i 

The third relation simply states that the number of 
bonds going out from the magnesiums is equal to the 
number of bonds going to the oxygens. Three of the n 

and q terms, then, are not independent of the others. 
If these are taken as n,, n,, and q,, then the three rela- 
tions above can be solved for n,, n,, and qz as follows: 

fl ,=1-q3-z2g4- * * - lOq1z 
+ n, + 2n5 + * . . + 9n1, 

The free energy function G may be minimized by expressing the relations that the partial derivatives of G with 
respect to each of the n terms from n4 to n,, and each of the q terms from 9, to q,, is zero. The derivatives with 
respect to n take the form 

aG P 
an, - a2 - 2a3 + a4 + ~ ( u ,  - 2u, + u4) + RT(lnn, - 2 h n ,  + Inn,) = 0 

aG P 
an, -%z - ~ C Y ,  + a5 + ~ ( 2 %  - 3u, + us) + RT(21nn, - 31nns + Inn,) = 0 

-- 

-- 

P -- - 9a2 - 1Oa, + a,, + -(9u, - IOU, + u,,) + RT(9lnn, - IOlnn, + Inn,,) = 0 aG 
anl2 W 

The first of these equations can be rewritten as follows: 

P P 
W 

a+ - a3 + ~ ( u ,  - u,) + RT (In n4 - Inn,) = a, - a2 + - (u, - u,) + RT (In n, - Inn,) 

Subtracting the first from the second yields 

and by subtracting them in pairs, one obtains the whole series of similar equations ending with 

P P 
W a 1 2  - a11 + w (012 - ull) + RT (In n,, - In rill) = a, - a2 + - (u, - u,) + RT (In n, - Inn,) 

It is convenient to set 

P 
A = as - a2 + w (0, - u,) + RT(lnn, - Inn,) 

where A is as yet undetermined. 
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While it is difficult to describe the exact physical meaning of this constant A, it is a measure of the difference in 
behavior of the cations on the one hand and the anions on the other. If they behave in exactly the same manner, A is 
zero. In any case, as will be evident later, with the assumptions that have been made, A can be uniquely determined 
in each case. The equations above can then be put in the form shown below: 

- = e q [  n, --- a 2  - a3 P(u, - uJ] exp (- A/RT)  
n3 RT WRT 

exp (- A/RT) -=exp[  n3 
tlr, RT WRT 

--- a3 - a 4  P(u3 - uJ] 

If A were known, these equations, along with the relation Zni = 1, would uniquely determine the n terms. 

The partial derivatives of G with respect to q can be expressed as follows: 

aG P 
393 W 

aG 
a q 4  W 

-- - - C Y ~  + a3 -ai + a: + - ( -u ,  + u3 - ut + u;) t RT (--Inn, + Inn, - lnq, + Inq,) = 0 

- - ~ ~ + 2 a 3 - a ~ + a : + - ( - 2 ~ ~ + 2 U ~ - ~ : + u : ) +  RT(-21nn,+2Inn3-lnq,+lnq4)=0 
P -- 

P -- - -loa, + 1&, - ai + ai2 + - (- 1017, + 10u3 - 0: + uL) + RT (-10 Inn, + 10 In n3 - In q2 + In qI2) = 0 aG 
aqI2 W 

If, as before, 

P 
a3 - a 2  + -(03 W - u,) t RT(Inn3 - In%) = A  

then the relations above can be expressed in the following form: 
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F. Coordination Population of a Random Network 

The relations that have been developed can be used 
to determine uniquely the n and 9 terms. Any arbitrary 
value is assigned to A, which is as yet unknown, and the 
ratios of the q’s to each other and of the n’s to each other 
are calculated. The 9 and the n terms are then adjusted 
so that 

xni = 1 
8 

.00138 

.00175 

.00201 
DO243 
.00291 
.00348 
.004 14 
.00490 
.00575 
.00671 
.00778 
.ma94 
.01016 
.01143 
.01271 
.01392 
.01503 
.01595 

If the correct value of A has been chosen, then, in 
addition, 

E i n i  = Ziqi 

.o0002 

.00002 

.00004 

.oooo5 

.moo7 

.o0011 

.000 16 

.00022 

.00032 

.00045 

.00062 

.00086 

.00118 

.00 1 59 

.00213 

.00282 

.00366 
DO469 

If this is not satisfied, then other values of A are tried 
until it is. In this way, one can calculate the distribution 
of n and 9 terms for a stress-free state or any state of 
hydrostatic pressure (or tension). The calculations em- 
phasize an important difference between such a liquid 
and a crystal. The crystal can change its volume only 
by changes in the interionic distances. The liquid can 
change its volume by structural changes to higher or 
lower average coordination numbers, which, in general, 
means that the compressibility of the liquid will be enor- 
mously greater. 

Pressure, 
bars 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 

In order to get some preliminary feeling for orders of 
magnitude, completely symmetrical behavior of the mag- 
nesiums and the oxygens was assumed. This implies that 
 CY^ = a:, CY3 = a:, a4 = CY:, and so on, and also that u2 = u:, 
u3 = u;, v4 = u:, and so on. The equations are perfectly 
capable of handling any much more general (and more 
plausible) case, but as a first attempt this oversimplifica- 
tion was made. It means that the A in the relations deter- 
mining the n and 9 terms is zero. The previous values 
for CY (Table 2) and u (Table 3) were used. 

In the calculations in the next section, it is necessary 
to know the n values (in moles per unit volume) for a 
wide range of tensions and pressures in order to discuss 
conditions close to a discontinuity (free surface or liquid- 
crystal interface). In this case, the ratios 

are calculated as described above, and then the absolute 
values are adjusted so that 

2 (n2u2 + n3u3 + n4u4 + n5u5 + ntiuti) = 1 

The factor of 2 enters because the n terms now describe 
not only the state of the magnesiums but also that of the 

Table 4. Ionic populations in MgO for different pressures 

Amount, moles/cm3, for indicated ion type and direction of pressure 

n,; 

.02535 

.02414 

.02300 

.02181 

.02060 

.01938 

.01814 

.O 1 690 

.01564 

.01438 

.01313 

.01188 

.01063 

.00943 

.00825 

.00712 

.oO405 

.00506 

.03425 

.03369 

.033 15 

.03245 

.03 165 

.03074 

.02971 

.02858 

.02732 

.02594 

.02444 

.02283 

.02 109 

.01932 

.01745 

.01556 

.01365 

.01179 

Tension 

n, 

.O 1 460 

.01533 

.01612 

.01686 

.o 1 757 

.01823 

.01883 

.01934 

.01976 

.02004 

.02017 

.02013 

.01987 

.01944 

.O 1 876 

.01787 

.01676 

.01545 

I n2 n6 

.02535 

.02650 

.02764 

.02876 

.02988 

.03098 

.03207 

.033 14 

.03420 

.03525 

.03628 

.03731 

.03831 

.03931 

.04030 

.04127 

.04223 

.04318 

n5 

.03425 

.03469 

.03504 

.03532 

.03554 

.03568 

.03576 

.03579 

.03577 

.03571 

.03560 

.03546 

.03527 

.03505 

.03479 

.03451 

.034 1 9 

.03386 

Compression 

na 

.01460 

.01384 

.O 1309 

.01234 

.01163 

.01093 

.O 1025 
DO96 1 
.00899 
.00840 
.00783 
.00730 
.00680 
.00632 
.00588 
.00546 
.00506 
.00469 

n3 

.00138 

.00113 

.00094 

.00076 

.OW62 

.0005 1 

.00042 

.OW34 

.00028 

.00023 

.o0018 

.00015 

.00012 

.m 

.oooO8 

.oooO6 

.oooo5 

.oooo4 

nz 

.00002 

.00002 

.ooOOl 

.00001 

.00000 

.00000 

.m 
,00000 
.m 
.00000 
.m 
.00000 
.00000 
.m 
.m 
.m 
.m 
.m 
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oxygens. It is not necessary to distinguish between the 
n and the q terms. 

Through the use of exactly this procedure, the data 
in Table 4 were computed for a number of values both 
of hydrostatic compression and hydrostatic tension. The 
numbers given are the number of moles per cubic centi- 
meter of each of the kinds of ions present. 

It has been necessary to derive these possible popula- 
tion distributions in the hydrostatic cases before taking 
up the case of a density gradient such as that which 
occurs near a discontinuity. It is then assumed that each 
layer near a discontinuity has one of the population dis- 
tributions above or an interpolation between two of them. 
This is discussed in the next section. 

111. Conditions Near a Discontinuity 

A. Gradient Region 

An isotropic liquid does not show viscous flow under 
the action of a hydrostatic pressure or tension, since such 
a stress distribution implies no shearing stress across 
planes of any orientation. In general, one then associates 
the absence of steady viscous flow in a liquid with the 
existence of a stress condition that could be described 
as a hydrostatic compression or tension. 

Close to a free surface there is a strong tension in the 
plane of the surface and zero tension perpendicular to 
the surface. Such a stress pattern is one that would in 
general produce viscous flow and yet no flow occurs that 
would manifest itself by any continuing change in shape. 
One way out of this difficulty is to say that the liquid is 
not isotropic (which is perfectly true), but this does not 
contribute much to describing what is actually going on. 
It is one of the main purposes of this report to examine, 
in terms of the postulated model, just how a liquid varies 
close to a free surface or a liquid-crystal interface and 
to show that there exist certain ways in which the plane 
tension (or pressure) can vary with depth so as to pro- 
duce zero flow. When these variations are then adjusted 
to satisfy the particular boundary conditions (free surface 
or liquid-crystal interface), they can then be used to 
describe the actual structure of the liquid close to the 
interface and to allow calculation of the surface tension 
of the liquid or the thickness of the grain boundary in 
a pure polycrystalline composite. 

One way of studying the structure in a varying region 
is to study the equilibrium conditions between two thin 
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parallel layers less than one bond length apart. The num- 
ber of bonds of any one kind breaking must be exactly 
balanced by the number of the same kind reforming. 

In the interior of the liquid there are n: moles per cm3 
of &coordinated magnesiums (or oxygens), ni of 5-coordi- 
nated ions, etc. (the superscript refers to the stress-free 
state), where, according to Table 4, 

n: = 0.02535 moles per cm3 

n; = 0.03425 

n; = 0.01460 

n$ = 0.00138 

n; = O.ooOo2 

In a layer of thickness dz,, there are nO, dz, 6-coordi- 
nated ions per cm2, n;dz, S-coordinated ions, etc., where 
dz, is considered to be very much smaller than a bond 
length. Each of the 6-coordinated ions sends out 6 bonds, 
so that there are 6nO,dz1 moles of bonds going out in 
random directions from this layer and terminating in 
those layers less than a bond length away on both sides 
of the dz, layer. The number terminating in a neighbor- 
ing layer of thickness dz, will be 

where I is the bond length. This simple result is deduced 
from the fact that if two parallel planes intersect a sphere, 
the surface area intercepted between them depends only 
on their distance apart and not at all on the “latitude” at  
which the intercept is made. The total number of bonds 
running from the magnesium ions in the dz, layer to the 
oxygen ions in the dz, layer (or vice versa) will be 

dz, dz, 
2 (h., + 5n; + 4 4  + 3 4  + 2ni) - 

or 

where 

dz,dz2 
BO - 2 

Bo = 6 4  + 5in: + 4 4  + 3 4  + 2n0, 
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Using the values from the stress-free data of Table 4, 
one obtains B" = 0.38593. 

The surface of a liquid is in plane tension and is there- 
fore in a less dense state than the interior. The material 
in the interior is stress-free. It seems reasonable that there 
is a region near the surface where the plane tension is 
decreasing (exponentially or otherwise) with increasing 
depth. This region will be examined first, and then we 
will consider how this region finally terminates in the 
skin at the surface. The region under the surface will be 
called the gradient region. In it the plane tension varies 
with depth, while the normal tension is zero. 

A layer of thickness dz, in the gradient region will have 
layers of different density on its two sides. The bonds 
that it sends out will not go out with random orientation 
as was the case with a deep interior layer. If bond direc- 
tions are measured from a normal toward the surface, 
it is reasonable to assume that the number of bonds 
within solid angle do at direction e would be of the 
form (P + Q cos 0) do. 

The total number of bonds going out from the ions of 
one kind in the dz, layer will be 

2.l' (P + Q cos 0) sin 0 de = 4aP 

where 

4aP = (6n, + 571, t 4n4 + 3n, + 2n2) dz, = Bdz, 

if 

B = 6n, + 5n, + 4n, + 3n, + 2n, 

If, at a distance z 2 ( z 2  < I )  toward the surface, there 
is a layer of thickness dz,, then the bonds from the dz, 
layer to the dz2 layer make an angle 0 with the outward 
normal where 

z r  cos e = - 1 

and the directions of the bonds from the dz, layer to the 
dz, layer lie within a solid angle &, where 

dz, &=47r- 21 

The number of bonds to a layer of thickness dz2 lo- 
Mg-0 or 0-Mg) will be 

The number of bonds to a layer of thickness dz, located 
at - z2 will be 

This means that in the course of the calculations in the 
gradient region, if we know the value of B to be assigned 
to a given layer and we know the number of bonds this 
layer sends to a neighboring layer on one side, we also 
know the number it sends to a neighboring layer the 
same distance away on the other side. This, as will be 
shown, allows the calculation to proceed layer by layer 
to give the possible density distribution in a gradient 
region. 

A magnesium ion surrounded by six oxygens can make 
very little adjustment of the angles between bonds, while 
a magnesium with fewer than six oxygens can have con- 
siderably more freedom in the directions of the bonds. 

A layer of thickness dz, having n6dz, 6-coordinated 
ions per unit area will send 

bonds from its &coordinated magnesiums to a neighbor- 
ing layer of thickness dz,. However, the number of bonds 
from its 5-coordinated magnesiums may be greater than 
or less than 

dz,  
21 5n, dz, - 

and will be denoted by 

dz2 dz, - 21 

where the superscript to rn refers to the layers intercon- 
nected in the order noted. In the stress-free interior, 
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mi-, = 5ni, but near the surface or any discontinuity 
this may not be the case. 

The probability that a bond will break or reform will 
depend on the stress along the direction of the bond. It 
would actually be more correct to talk in terms of the 
strain rather than the stress, since it is the slight changes 
in local geometry that alter the probabilities. However, 
at this stage of the calculations, where orders of magni- 
tude only are being sought, it is a little easier (although 
somewhat incorrect) to think in terms of the stress rather 
than the strain. 

The normal stress inside a plane boundary is always 
taken as zero, since, as far as variations in bond length 
go, atmospheric pressure is effectively zero. The bonds 
between two layers one bond length apart are then under 
zero stress. The probability of their breaking is the same 
as that of an interior bond, and the probability of two 
ions coming together to form a new bond will be the 
same as that of two ions in the interior separated by 
the same amount. 

At some reasonable time after a new surface is formed, 
the layers near the surface reach some state of structural 
equilibrium, at which time the number of bonds breaking 
between two layers is the same as the number reforming 
between the same two layers. For two layers one bond 
length apart, so that the bonds are not under stress, the 
ratio of the probability of a bond of any particular char- 
acter breaking to the probability of its reforming must 
be the same as the corresponding ratio for two neighbor- 
ing layers in the stress-free interior. The entire subse- 
quent treatment of the structure of a gradient region is 
based on this concept. 

It is easier to break a bond between two 6-coordinated 
ions than between two 2-coordinated ions. The different 
kinds of bonds must be treated differently and some sys- 
tem of nomenclature must be adopted to describe them. 
A bond from an a-coordinated ion in layer 1 to a 
b-coordinated ion in layer 2 will be called an (a-€I) bond. 
Within the limitations of the assumptions already made, 
the probability of breaking of each of the following bond 
types will have to be considered: 

The probability of a (4-5) bond between two layers 
breaking will depend &st of all on the number of (4-5) 
bonds per unit area. The number of 4-coordinated ions 
of either kind in layer 1 is n: dz,. 

According to the previous definition, the number of 
bonds going out from these 4-coordinated ions in layer 1 
to ions of any coordination number in layer 2 is 

dzZ rn:-, d z ,  - 2l 

Of these, a fraction will terminate on 5-coordinated 
ions in layer 2, and this fraction will be the ratio of the 
number of bonds from 5-coordinated ions in layer 2 to 
the total number of bonds between the layers. The 
number of bonds from 5-coordinated ions in layer 2 to 
layer 1 is 

The total number of bonds between the two layers can 
be written as either 

d z ,  dz,  
f ml-2 + rn l -2 )  ___ 

21 2 + (ml,-, + ml-  3 

or 

d z ,  dz ,  
(mg-l + m2-l + mi-1 + mi-1 + rnz-1) - 21 

and for convenience will be written 

dzl  dz, 
21 

Bl-2 __ 

or 

the order of the two superscripts in this case not being 
of any significance. The number of (p-5) bonds is then 

mi-? mg-l dz,  dz, 
El-2 21 
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and similar expressions can be written for each of the 
other kinds of bonds. In a gradient region, 

ml-2 = hl 
6 6 

but 

m;-2 # 5n; 

# 4n: 

# 3n: 

# 2n: 

In the interior, these inequalities all become equalities. 

To reform a (4-5) bond between layer 1 and layer 2, 
a 3-coordinated magnesium ion in or near layer 1 will 

have to recombine with a 4-coordinated oxygen in or 
near layer 2. The number of 3-coordinated magnesium 
(or oxygen) ions in layer 1 is n; dz, and the number of 
4-coordinated oxygen (or magnesium) ions in layer 2 is 
n: dz,. 

Now if the distribution of bonds from these 4-coordi- 
nated ions were so one-sided that the 4-coordinated ions 
in layer 2 sent as many bonds to layer 1 as the same 
number of 6-coordinated ions in layer 2 would do, then 
none of these 4-coordinated ions in layer 2 would be 
available to join with ions of any kind in layer 1. 
Therefore, instead of saying that the probability of the 
3-coordinated ion and the 4-coordinated ion is propor- 
tional to n; n;, it is taken as being proportional to 
(6n; -m;-2) (6n: - mF).  The ratio of the probability of 
a (4-5) bond breaking to the probability of a (4-5) bond 
being reformed between layer 1 and layer 2 is propor- 
tional to 

m l - Z  ml-2 
4 5  

Bl-2 (6n: - ml-2 ) (6n2 - m2-l) 

There would also be a temperature-dependent term, but since comparisons will be made with two similar operations 
at the same temperature, it is not necessary to include this. For the two layers to continue in equilibrium one bond 
length apart, this expression must be equal to the corresponding expression for two neighboring layers in the stress- 
free interior. In the interior, the following conditions exist: 

h1-m ' -  - - SnO, - 3nO, = 3n0, 

Hence 

12 

- 4n;5n; - 10 n",; m2,-l - 
g i -2  (&; - mi-2 ) ( 6 4  - mz-1) Bo 3n0,2ni 3B0 n0, n; 
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All the quantities on the right-hand side have already been computed, so that the left-hand side is known. There are 
16 such relations, corresponding to the 16 types of bond that may break. These 16 relations are (remembering that 
mi-" = 6n; and m:-l = w) 

36n; n: - 36n: nO, 
Bo nO, n; 

- 
B1-2(en: - ml-2 ) (6ng - rng-l) 

6n; mg-' - 30n0, nO, -- 
Bl-2 (en; - m l - 2  ) (6n: - m:-l) 1 Bo n0,2n0, 

6nl, m:-l - 24n; nO, - 
B1-2 (Sn: - m:-*) (6ng - m;-l) Bo n; 3n0, 

- WnO, nO, m:? m:-l - 
(6n: - (6n: - rn:-l) Bo 2nO, 2nO, 

(3) 

(7) 
- 2On0, nO, mi-l - 

B1-? (6n: - ( 6 4  - mg-l) Bo 2n; 3n; 

- 15n0, nO, m:-2 mf-' - 
B1-2 (6n: - m:-2) (6n: - rn3-l) Bo 2 4  4n9 

3 12n; n0, m l - Z  m:-l 

B1-' (6n: - mi-2) ( 6 4  - m;-l) 
- - 

Bo 4n; 3n0, 
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These are not 16 independent relations. From the first five, along with Eqs. (9) and (13), all the rest can be derived. 
Combining the first four, the following relations can be derived: 

Equation (1) can be rearranged in the form 

and Eqs. (l), (5), (9), and (13) give 

Two jjacent layers (one bond length apart) are chosen 
from any of the layers in Table 4. One is called layer 1 
and the other layer 2. A tentative value is taken for mE1, 
and ( 6 4  - mE-l) is computed. 

From Eq. (17), (6nz - mz-l) is calculated and, hence 
mz-l. 

From Eq. (18), (6ni - mz-l) is calculated and, hence, 
m;-I. 

From Eq. (19), (6n: - mY) is calculated and, hence, 
m%-l. 

Since 

g1-2 = &p + np-1 + m2-1 + m2-1 6 5  3 + m;-1 

this can now be calculated and, hence, (6n: - from 
Eq. (20). The rest of the equations will give, in turn, 
ml-2 , ml-2 , and 

Since 

this can be calculated again. If it does not agree, the 
original value of mE-l was wrong, and another one is 
chosen. 

The use of a little judgment and the development of 
simple empirical rules usually mean that not more than 
three tries are necessary for any pair of adjacent layers. 

The values for B1-2 and B2 are then known, and B2-3 
can therefore be derived since 

Layer 3 is then sought, so that when it is placed adja- 
cent to layer 2 (one bond length apart), the number of 
bonds between them is given by P3. This usually means 
a linear interpolation between two of the layers in Table 4. 
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For clarity, the process just described in detail could 
be described in general terms as follows: Two layers one 
bond length apart are chosen, and any state of plane 
stress from Table 4 is assigned to each of these layers. 
The layers are chosen one bond length apart so that the 
bonds are perpendicular to the surface and hence under 
zero stress. The processes of breaking and reforming each 
kind of bond can therefore be directly compared with 
similar processes between two layers in the stress-free 
interior. There is then only one pattern of bonds between 
these two layers that satisfies the equilibrium conditions. 
The pattern of bonds between the layers uniquely deter- 
mines the pattern that each of these layers sends out to 
another layer one bond length away in the other side. 
This, in turn, uniquely determines the composition and 
stress of these next layers, and the process can be repeated 
indefinitely. 

Depending on the choice of the first two layers, several 
different patterns are obtained for the average coordina- 
tion number plotted against the layer number. If the first 
two layers are the same and correspond to the stress-free 
layer in Table 4, then all the other layers will be the 
same, and this simply gives the state of things in the stress- 
free interior. This is illustrated in Fig. 3a. 

If the two initial layers are of lower average coordina- 
tion numbers than those in the stress-free state, curves 
of the type of Fig. 3b may be obtained, which might 
represent conditions in a thin film with two free surfaces. 

If the two initial layers have higher average coordina- 
tion numbers than those in the stress-free state, curves 
of the type of Fig. 3c may be obtained, which represent 
possible conditions on a grain boundary between two 
crystal grains at temperatures below the melting point 
of the crystal. 

If, in either of the two previous cases, too steep a 
gradient was assumed to start with, then curves of the 
type of Fig. 3d may be obtained, which “cross the line.” 
These might represent a random layer in the surface of a 
crystal grain at a temperature near the melting point. 

If the first two layers are very carefully chosen, then a 
distribution like that of Fig. 3e or 3f may be obtained. 
Figure 3e represents conditions as the free liquid surface 
is approached from the stress-free interior, and Fig. 3f 
represents conditions in which a liquid-crystal interface 
is approached from the interior of the liquid at a tem- 
perature at which the crystal is at equilibrium with the 
liquid. All these are possible, depending on the exact 
boundary conditions imposed in any particular case. 

B. Free Surface 

One way of describing a free surface is as follows: The 
ions in and close to the surface send bonds only in 
the inward direction so that a 6-coordinated ion on the 
surface is a complete impossibility and even a 5- or 
4-coordinated ion is unlikely. The assumption is then 
made that the skin layer is populated by 2- and 3-coordi- 
nated ions. The number of bonds they send to a layer 
one bond length below the surface is as if the surface 
layer had 4- and &coordinated ions, but their affinity 
for other ions is more like the afFinity of 2- and 3-coordi- 
nated ions. The skin layer should really be thought of as 
having a finite thickness of some small fraction (say 10% 
or less) of a bond length. The exact thickness of this 
layer is not actually important in the free surface, but 
it is important at a liquid-crystal interface. 

It should be pointed out, if it is not immediately obvi- 
ous, that this method of describing the surface is not a 
rigorously complete description of what is happening 

( d )  

DISTANCE 

Fig. 3. Possible types of density gradient as a function of selection of ratio of average coordination in first two 
layers: (a) ratio equal to stress-free state (stress-free layer), (b) ratio less than stress-free state, (cl ratio 

greater than stress-free state, (d) ratio much less or much greater than stress-free state, (e), (f), ratio 
selected for distributions shown. 

JPL TECHNICAL REPORT 32-1042 15 



close to the surface of a liquid. It fails to account com- 
pletely for the behavior of the layers less than one bond 
length from the surface. In this region the number of 
6-, 5-, and 4-coordinated ions is gradually increasing, 
going in from the surface. This certainly can be treated 
with much greater sophistication. The present approach 
is designed to give a preliminary feeling for some of the 
orders of magnitude involved and seems to be capable 
of doing this. 

Within the limits of the assumptions made, the prob- 
lem is then to express as precisely as possible the condi- 
tions for equilibrium between the surface layer and a 
layer one bond length below the surface. Each 2-coordi- 
nated ion in the surface can combine with any available 
ion in the interior layers to become a 3-coordinated ion. 
The bonds to each 3-coordinated ion in the surface may, 
on occasion, break. For equilibrium, the two processes 
of breaking and reforming must balance. 

The surface layer is called layer 1 and is of thickness 
dz,. It contains n',dzl 3-coordinated ions and n: dz, 
2-coordinated ions of either charge per unit area. The 
(3n: + 2n3 dz, bonds emanating from these ions all go 
inward but are assumed to have perfectly random orien- 
tations within the solid angle of 2n covering all the inward 
directions; this means that the number of bonds going 
to a layer of thickness dz, within one bond length 1 is 

or 

or 

dz, 
(3n; + 271:) dz, - 1 

az.. 
(6n1, + 4n;) dz, - 21 

dz, dz2 
B 1 - 2  - 

21 

where 

and in the notation used before 

The assumption of what is meant by the random ori- 
entation of bonds from the surface layer is discussed in 
greater detail in Appendix C. 

The bonds from the 3-coordinated ions in the surface 
will divide themselves among the 6-, 5-, 4-, 3-, and 2-fold 
ions in layer 2, one bond length below the surface, in a 
manner depending on the number of bonds each of these 
ions in layer 2 sends to layer 1. The number of (3-6) 
bonds is then 

6n;-- dz,dz2 mi-, = en:-- dz,dz, 6n: 
21 B1-2 21 B1-2 

The number of (3-5) bonds is 

dz, dz, mg-l 
6ng - - 21 B1-2 

The number of ( 3 - 4 )  bonds is 

dz,dz ,  rn-l  6n; - - 
21 B1-2 

The number of (3-3) bonds is 

dz ldz2  m:-l 
6n; - - 21 B1-* 

These are the bonds whose possible breaking enters 
into the balance of breaking and reforming. 

The probability of a 2-coordinated ion in layer 1 combining with a 5-coordinated ion in layer 2 will be taken, 
as in the earlier case, to be proportional to 

( 6 4  - (6ng - mg-') 
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and the ratios of this probability to the probability of breaking of a (3-6) bond must, at the same temperature, be 
the same as the corresponding ratio for two adjacent layers (less than one bond length apart) within the interior of the 
stress-free liquid: 

The corresponding relations for each of the other kinds of bonds are, using the same principles, 

These relations may be written as follows: 

The first step is to assume some arbitrary ratio of 
n; : n; in the surface layer. It is then assumed that the 
surface layer behaves as if it were a slice of thickness 
dz, out of a large homogeneous volume containing 3- and 
2-coordinated ions in the assumed ratio and that a 
3-coordinated ion occupies a volume of 11.907 cm3 per 
mole and a 2-coordinated ion occupies 16.796 cm3 per 
mole as in the interior calculations. This means that once 
the ratio is chosen, the absolute values of n; and nl, are 
known and hence everything within the square brackets 
in the four equations is known. If n& n:, n:, n;, and n: 
are assumed to have one of the sets of values previously 
calculated or some interpolated set, then each of the 
quantities m:-l, rn;-l, mf-l, and m;-l can be calculated, 
and hence B1-z can also, since 

and this value must be the same as the value given by 
the relation 

B1-2 = 6n; + 4n; 

The single assumption of the ratio of n; : n; in the 
surface layer uniquely determines the layer one bond 
length below. If we know the nature of this layer and 
the number of bonds it sends to the surface layer, we 
also know the number of bonds it sends to the layer one 
bond length further in. This next layer is thus uniquely 
determined, and so on. This succession of layers must 
asymptotically approach the stress-free interior condition, 
and there is only one choice of surface layer that allows 
this to happen. 

With the assumptions that have been made, the one 
and only surface layer that corresponds to the asymptotic 
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distribution consists of 98.17% %fold ions and 1.83% 2-fold 
ions. These values were found by trial and error. Values 
on one side of this give rise to a curve of the type of 
Fig. 3b and, on the other side, to a curve of the type 
of Fig. 3d. 

The layer one bond length below the surface has an 
average coordination number of 4.609. The next layer 
below has 4.999. The succeeding layers are all very close 
to the value of 5.105 existing in the stress-free interior 
of the liquid. A rough numerical integration shows that 
this corresponds to a surface tension of about 2700 dynes 
per centimeter, which is probably too large by about a 
factor of 2. Considering the nature of the assumptions 
made along the way, this is not considered a discour- 
aging result. 

C. liquid-Crystal Interface 

The study of the free surface is not a prime objective 
of this investigation but is a useful starting point for the 
study of the interface between a crystal and a liquid. At 
the melting point of the crystal, the crystal surface can 
exist in equilibrium with an infinite thickness of liquid. 
Probably if the theory were sufficiently well developed, 
different melting points might even be assigned to dif- 
ferent faces, but none of the parameters are as yet suf- 
ficiently well known to allow such distinctions to be made. 
In order to get some numbers to use in the calculations, a 
crystal face will be taken as meaning a (100) face. 

If liquid MgO is brought into contact with a (100) face 
of a crystal of MgO, a certain number of the ions in the 
liquid will bond themselves to the surface ions of the crys- 
tal with the same kind of ionic forces as hold either the 
crystal or the liquid together. The interface will then be 
described as follows: It will be essentially the same as 
the free surface except that to a number of the ions in the 
surface there will be bonds, essentially perpendicular to 
the surface, which will bond the ions of the liquid sur- 
face layer to the ions of the crystal surface. If more of 
these bonds are forming than are breaking, the crystal 
will be growing, and if more are breaking than form- 
ing, the crystal will be dissolving. At equilibrium there 
will be a balance, and the conditions for balance help 
to determine the nature of the surface layer. 

The free surface of the liquid was considered to con- 
sist of ions that are bonded to two or to three ions of 
the opposite charge in the liquid. If these ions may now 
be given an extra bond, joining them to the crystal, there 
will be essentially four kinds of ions to be considered, 
since each of the two previous species may or may not 

18 

be bonded to the crystal. This really implies a finite thick- 
ness for the surface layer since an ion not bonded to the 
crystal will, of necessity, be further from the crystal face 
than one that is so bonded. This layer of finite thickness 
is also forced on us for other reasons, as will appear 
shortly. 

The four types of ions, (a), (b), (c), and (d), are illus- 

(1) Type (a) is joined to three ions in the liquid and to 

(2) Type (b) is joined to three ions in the liquid but 

(3) Type (c) is joined to two ions in the liquid and to 

(4) Type (d) is joined to two ions in the liquid but not 

trated in Fig. 4 and listed below. 

one in the crystal surface. 

not bonded to the crystal. 

one in the crystal surface. 

bonded to the crystal. 

The number of moles per unit volume of each of these 
is denoted by h, nb, nc, and nd respectively. 

CRYSTAL 

L lOUlD 
( 0 )  

C R Y S T A L  

h L l O U l D  ( C )  

C R Y STAL 

LIQUID 
( b )  

C R Y S T A L  

A LIQUID 

( d )  

Fig. 4. Different bonding types of ions in surface layer 
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The surface layer must be in equilibrium with the crys- 
tal surface and with each liquid layer lying within one 
bond length, or in these calculations the surface layer 
must be in equilibrium with the particular layer lying 
one bond length below the surface. Two layers are in 
equilibrium if the number of bonds of any one species 
joining them remains constant because of equal rates of 
breaking and reforming. Since the normal stress is zero, 
the bonds between layers one bond length apart are in 
zero stress, and the rates of breaking and reforming can 
be directly compared with the corresponding rates be- 
tween any two layers in the interior of the stress-free 
liquid. 

The number of either cations or anions per unit area 
of the crystal surface is denoted by ns, which is easily 
computed for any particular face. In most of the calcu- 
lations, the crystal face was assumed to be a (100) face. 
This face is easier to handle than most of the other pos- 
sible faces, but any orientation could be handled with a 
little more effort. The condition for equilibrium is that 
the number of bonds of any one kind between the layers 
divided by the product of the concentration in each of 
the layers of those kinds of ions whose coming together 
would reform the bond in question must be the same as 
the same ratio for two adjacent layers in the stress-free 
interior. 

If the surface layer is assumed to have thickness AZ, 
then in this layer there are n,Al ions of type (a) per unit 
area and n,AZ ions of type (c) per unit area; therefore, 
between the liquid and the crystal there are (n, + n,)aZ 
bonds per unit area. There are, therefore, in the crystal 
surface, n, - (n, + n,)aZ cations (or anions) not con- 
nected to the liquid, and any one of these is available 
to join with a (b) or a (d) ion in the liquid surface and 
form a new bond. 

The number of ions of type (b) in the liquid surface 
is nb Al  and, of type (d), is nd Al. 

or 

The corresponding ratio for (4) bonds is 

To compare these quantities with similar quantities 
for two adjacent interior layers, a (b) type ion is taken to 
have the same tendency to recombine with other ions 
as a 3-coordinated ion, a (d) type ion is taken to behave 
like a 2-coordinated ion, and an ( a - 6 )  bond is taken to 
have the same tendency to break as a (4-6) bond, while 
a (c-6) bond behaves like a (3-6) bond. 

The number of (4-6) bonds between a layer of thick- 
ness dz, and an adjacent layer of thickness dz, in the 
interior is 

where 

Bn = 6n0, + 5n; + 4n0, + 3n; + SnO, 

as was shown earlier. The number of available 3-coordi- 
nated ions in layer 1 was taken to be proportional to 
( 6 4  - nz;-,) dz,, but for comparison with the case in 
question, this should be written 

(n; - F) dz, 

Similarly, the available 5-coordinated ions in layer 2 
should be written 

There are two kinds of bonds between the liquid and 
the crystal, and these could be designated as (a-6) bonds 
and (4) bonds, meaning that they connect an (a) type 
or a (c) type ion in the liquid surface to a 6-coordinated 
ion in the crystal surface. The ratio of the concentration 
of (a-6) bonds to the product of the concentration in 
the layers of ions capable of joining together to form 

4 4  6n0, dz, dz, ( a - 6 )  bonds is -- 
Bn 21 

nb [n,  - (n, + n,) Al l  - 1 - 34 n; dzl dz, 36 

288 n; nO, 1 
2Z n; n; Bo 
---- - - na - 

n, Al  
11.1, AZ [n, - (na + n,) Al l  

(ng - F) dz, 

In the interior, n: can be written as n;; n: as n;; m;-a 
as 3n;; and mz-l as 5n:. Hence, 
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and 

3n: 6n2 dz, dz, 

These two equations and the relation 

(where u is the volume in cubic centimeters per mole to 
be assigned to these ions) give three equations to deter- 
mine the four quantities n,, nb, n,, and nd. If one of them 
is chosen arbitrarily, all of the rest are determined. If, 
for instance, n, is taken as 0.04000, nb = -0.00017, 
n, = 0.04226, and nd = -0.oooO4. Other choices of n, give 
similar patterns, in that nb is always very much smaller 
than n,, and nd is very much smaller than n,. This means 
that almost all the ions in the surface layer are bonded 
to the crystal surface. As a first approach it was assumed, 
then, that the surface layer consisted entirely of (a) and 
(c) type ions. The relative amount of each of these is 
determined at the melting point by the condition that 
the gradient within the liquid is of the asymptotic type, 
so that the density blends into that of the stress-free 
condition as the distance from the crystal increases. 

There is only one ratio of n, to nc that gives this con- 
dition, and for the particular numerical values of the 
various parameters that have been used here, this ratio 
is about 60.75% of (a) type to 39.25% (c) type. At this 
value, the density comes very close to the interior density 
about three or four bond lengths from the interface. 

The same assumed energy relations were assumed to 
hold at lower temperatures and it was calculated that at 
100°C below the melting point the asymptotic distribu- 
tion did not exist any longer, but rather that the density 
decreased to a minimum and then increased again, so 
that at this temperature the liquid could exist in a thick- 
ness of about two bond lengths between two crystal 
grains. While this is a somewhat tentative result, con- 
sidering many of the gross oversimplifications, it does 
seem to indicate that the grain boundary thickness in 
pure MgO must be quite small in terms of bond lengths. 

IV. Discussion of Method and Results 

More rigorous development of this theory is possible 
with the aid of electronic computing facilities. Any of 
the few numerical computations that were attempted 

assumed an almost perfect interchangeability of anions 
and cations, although this was not a limitation on the 
basic theory, which treated the two ions and the energies 
involved quite distinctly. It is difficult to put more than 
six oxygens around a magnesium, but geometrically there 
is no difficulty in putting six magnesiums around an oxy- 
gen. If only for this reason, it will be desirable to attempt 
to evaluate those parameters that will accurately describe 
the differences between the ions. This will be particularly 
important at the surface, where it is very often assumed 
that the more polarizable anions protrude beyond the 
cations. 

One or two actual contradictions are introduced for 
the sake of simplicity. It was considered meaningful to 
talk about two layers one bond length apart but, in the 
calculation of the volume occupied by ions of different 
coordination numbers, to make use of the well recog- 
nized fact that the bond distance is a function of coordi- 
nation number. In other words, it will be necessary to 
learn how to handle bonds of different lengths. This will 
be particularly true when dealing with mixed oxides and 
will probably be handled by paying much more atten- 
tion to the details of the elasticity problems involved. 
Between two adjacent layers there will be bonds of dif- 
ferent lengths and, therefore, different orientations and 
different states of stress and strain. When the theory is 
better able to specify how the state of stress and strain 
of the bonds of all kinds that have their midpoints in a 
given plane varies with orientation, then it should be 
possible to handle mixed oxides as well as the obvious 
variations in bond length present in a single oxide. 

With the ability to handle several different cations, the 
problem of the effect of hydroxyl ions as an impurity 
could be treated. Since any additives will lower the 
liquidus and since the grain boundary thickness decreases 
from infinity at the temperature where the pure MgO 
crystals are in equilibrium with the liquid, it is reason- 
able to guess that the presence of impurities will increase 
the equilibrium thickness of the grain boundaries. It is 
impossible to put orders of magnitude in the variation at 
this time but the theory might be able to treat this. 

Since the theory has developed methods to describe 
the probability of the breaking and reforming of bonds 
under different temperatures and stress conditions and 
also the volume changes to be associated with such pro- 
cesses, it should be possible to calculate viscosities of 
simple oxide melts and mixtures of melts. The same ideas 
are currently being applied only to silicate melts but 
might also give valuable information on melts currently 
of importance in the fused-cast refractory industry. 
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Appendix A 

Validity of Network Energy Calculations 

The assumption is made that in a network it is valid 
to calculate molar energies by taking the numbers in 
Table 1 as representing, when multiplied by e2/r, the 
potentials existing at the locations of ions of the different 
coordination numbers, multiplying these by the charge 
on the ions of such surroundings, adding over the whole 
structure, and dividing by 2. As a check on the validity 
of such a calculation for a network, it is interesting to 
apply the same concept to the calculation of energies 
of crystal structures other than those from which Table 1 
was derived. 

The value of 1.538 is read from the curve of values for the 
Madelung constant as a function of coordination num- 
bers: 

eo+o = -2 X 4 X 1.5387 e2 

or -12.304e2/r. The energy per molecule is then 

1 e2 [ 13.984 + (2 X 12.304)] = 19.296 5 
2 T  

- -- 

Rutile (TiO,), for example, has, per molecule, one tita- 
nium ion of charge 4 and two oxygen ions of charge -2. 
Each titanium ion is surrounded by six oxygen ions and 
each oxygen ion is surrounded by three titanium ions. 

The directly calculated Madelung constant for rutile 
is 4.816, which, according to the conventions usually used, 
means that a crystal of the rutile structure made up of 
cations with charge + 2 and anions of charge - 1 would 
have an energy of 4.816e2/r ergs per molecule. 

Since each oxygen has a charge of -2, the potential 
at the location of a titanium ion + T i  may be written Since the charges are twice these standard values, the 

charge per molecule is four times this or 19.264e2/r, in 
very good agreement with the less rigorous method used 
above. 

e' 
+Ti = -2 X 1.748- 

T 

For corundum (A1203), the method used above gives 
24.330 eZ/r, compared with 25.031 ez/r by direct Made- 
lung constant determination. 

Since the charge in the titanium has the value f4, 

The same method applied to the fluorite (CaF,) struc- 
ture gives 5.048 e2/r, compared with 5.0388 ez/r by direct 
Madelung constant calculation. 

or - 13.984 e'/r. In the same way, do may be written 
Such reasonably good agreement on these crystals of 

mixed valence lends considerable plausibility to the cal- 
e' 

$0 = 4 X 1.5387 

- 
culation of energies of a random network using the same 
principles. 
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Appendix 6 

Effect of Randomness 

One way of attempting to describe some of the differ- 
ence between a regular crystal lattice and a random net- 
work is to say that in the crystals all of the various 
interionic distances are rigorously fixed by the geometry, 
while in a network the near neighbors are fairly well 
fixed as far as distance from any arbitrarily chosen cen- 
tral ion are concerned but that more and more latitude 
is allowed in distances from the central ion as these dis- 
tances increase. Instead of saying that there is a certain 
number of ions at some definite distance, one would say 
rather that there is a certain probability of finding ions 
at or near this distance, normalizing this probability to 
correspond to the actual number of ions involved. The 
function describing this probability would be one that 
goes to zero at r = 0 and also at r = 00 but has a peak at 
the value of r corresponding to a regular crystal structure. 

Instead of saying that there was a charge q (the sum 
of the charges of all ions at one specific distance r )  at 
some distance r, the idea would be expressed by saying 
that the probability of finding charge between T and 
r + dr would be expressed by 

where the particular form has been chosen to have a 
maximum at r = r,, to go to zero at T = 0 and r = co, 
and to satisfy the relation 

22 

The quantity u expresses the lack of sharpness of the 
distribution a = O corresponding to a crystalline distri- 
bution. 

The potential 4 at the central ion from such a distribu- 
tion would be given by 

which becomes 

and has the effect of reducing 4 in a manner dependent 
on a. This not very surprising result really arises from 
the particular form of the distribution selected. Because 
the distribution must go to zero at r = 0, it is not quite 
symmetrical about r = To and, in fact, pushes the charge 
a little away from the value To; in this way it reduces the 
contribution. 

Since it seems to be the case in random networks that 
have been extensively studied that the interionic distances 
for near neighbors are essentially the same for glasses as 
for crystals, the value of a is considered to be small 
enough so that the randomness will not seriously affect 
the calculations. 
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Appendix C 

Orientation of Bonds From Surface layers 

In the preceding calculation, the assumption was very 
explicitly made that the bonds emanating from the sur- 
face layer went out with a random orientation and that 
this implied that the number within any inward-directed 
solid angle d m  was simply proportional to do and inde- 
pendent of its orientation. If it is postulated that no two 
bonds going out from the same ion can make an angle 
of less than 90 deg with each other and that all combina- 
tions of directions not violating this restriction are equally 
probable, then it is possible, as will be shown below, to 
calculate what the distribution with angle will be. This 
distribution turns out to be very different from the so- 
called random distribution used in the calculations. In 
fact, as the angle that the bond makes with the surface 
plane approaches 90 deg, the probability of finding a 
bond in that direction approaches zero. This is shown 
below, first for the case of a surface ion with two bonds, 
and then for one with three. 

1. Surface Ion With Two Bonds 
It is assumed that there are, in the surface, N ions 

per unit area, each connected to two ions of the opposite 
charge. The two bonds have been labeled, purely at ran- 
dom regardless of orientation, number 1 and number 2. 
The distribution with angle of the number 1 bonds will 
therefore be exactly the same as the distribution of num- 
ber 2 bonds. Every pair of directions lying within the 
inward hemisphere but not closer to each other than 
90 deg is equally probable according to the assumption. 

or 

N 
27 

A = -  

The number of number 1 bonds in solid angle do at 
angle e with the inward normal is 

N 
27 - edo 

which implies that the concentration at 6 = 0 is zero. 
One way of handling this difliculty is to assign to the 
surface layer a finite thickness A1 (much less than the bond 
length I) and to assume that each ion within this layer 
sends out bonds with the same distribution as that just 
calculated. 

A layer of thickness dz, collects from a neighboring 
layer, less than one bond length away, all bonds lying 
within a solid angle: 

or 

277 d ~ 2  

I 
If the number 1 bond makes an angle of 0 with the 

surface inward normal, then the number 2 bond has its 
direction restricted to a lune on the sphere surrounding 
the ion concerned. This lune is bounded by two great 

and these bonds make with the inward normal an angle 
whose cosine is 

circles intersecting each other at an angle 6 and subtends 
a solid angle of 26' at the central ion. Since all directions 

2 2  - 2 1  
1 

within this lune are equally probable, this means that 
the probability of finding a number 1 ion at angle 0 is 
proportional to 26 or simply to 6.  This means that the 
number of number 1 bonds within solid angle du at 
angle 0 to the inward normal is AB&, where A is an 
undetermined constant that must satisfy the condition 
that the integral of this expression over the whole inward 
hemisphere must be equal to N or 

The bonds from a layer z1 inside the surface going to a 
layer one bond length from the surface make with the 
inward normal an angle whose cosine is 

1 - z1 

1 

The number of bonds from a layer of thickness dz,, 
distance z1 in from the surface, and terminating in a 
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layer of thickness dz? one bond length in from the sur- 
face, is then 

n2 dz, 1 - z1 27 dz, 
cos-' - - 2ir 1 1  

or 

1 - z1 dz, 
n2 dz, cos-' - - z z  

where n, is the number of ions per unit volume on the 
surface layer, and the total number terminating in this 
same layer from all of the layers within Al of the surface is 

2 - 5 ,  dzl n, d a 2 1 A 1  COS-' ~ - z z  

By writing 

I - 5 ,  
0 = cos-'- 1 

this becomes 

If Al/l is taken as 0.1, this becomes 0.03n,dz2.  Since 
there are two bonds from each of these surface ions, the 
total number of bonds from this surface layer to a layer 
of thickness dz,, one bond length from the surface, is 
0.06 n2 dz, .  

II. Surface Ion With Three Bonds 
The problem is a little more involved when there are 

three bonds instead of two. Again, these are taken to 
have been labeled number 1, number 2, and number 3 
for each ion in a perfectly random manner. If the num- 
ber 1 bond makes angle e l  with the inward normal, then 
both the number 2 and number 3 bonds are located 
within a lune formed by two great circles intersecting 
at angle el. If the position of the number 2 bond is now 
selected within this lune, then the position of the num- 
ber 3 bond is further limited to a spherical triangle, two 
of whose sides are the great circles bounding the lune, 
while the other is a great circle whose pole is the location 
of the number 2 bond. The probability of finding a num- 
ber 1 bond in a given position will be obtained by evalu- 
ating an integral in which the location of the number 2 
bond is allowed to traverse appropriate orientations. 
These orientations are defined by the position of the num- 
ber 1 and number 2 bond locations and are associated 
with a factor equal to the area of the spherical triangle 
available to the number 3 bond. 

To evaluate this integral, consider a lune bounded by + = 0 and + = 8,. If bond number 2 is located at a direction 
e+ within this lune (0 4 + 4 el), then the spherical triangle available to bond 3 may be computed, remembering that 
the area of a spherical triangle is equal to the sum of the three interior angles minus T and that the angle of intersec- 
tion of two great circles is the same thing as the angular distance between their poles. The area is then 

cos-l (sin e sin +) + cos-' [sin 8 sin (e ,  - +)] + el - 

The integral to be evaluated is 

6'' 1: {cos1 (sin e sin +) + cos-' [sin e sin (e, - +)I + el - T }  sin 0 de & 

and the probability of finding a number 1 bond lying within a solid angle do located at direction 8, is proportional to 
this times do. 
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This expression was integrated numerically and the 
results are shown in Table C-1, expressed as the percent- 
age of the bonds that lie at an angle of less than those 
values listed. For comparison, the same percentages are 
also shown for ions with two bonds and ions with one 
bond (perfectly random). 

Table C-1. Possible angular distribution of bonds 
to a surface ion 

3 bonds 

.02 

.26 

1.15 

3.35 

7.67 

15.09 

26.87 

43.98 

67.90 

100.00 

Angular limits, 
from 0 to angle 

listed, deg 2 bonds 

.13 

1.03 

3.42 

7.95 

15.17 

25.50 

39.1 8 

56.27 

76.65 

100.00 

Percentage of bonds within listed limits 

1 bond 

1.23 

4.89 

10.90 

19.10 

29.29 

41.22 

54.60 

69.09 

84.35 

100.00 

The restrictions on the smallest angle between bonds 
(90 deg) have the effect of greatly changing the distribu- 
tion. Again it is necessary to postulate a certain thickness 
of surface layer, and if this is taken again as 0.1 I ,  then 
the number of number 1 bonds from the surface layer 
to a layer of thickness dz, one bond length from the sur- 

face is 0.01 n3 dz,, and the total number of bonds will 
be 0.03 n3 dz,. 

111. Bonds at Right Angles 
If it is specified that the two bonds to a surface ion 

are perpendicular to each other, then for each choice of 
the orientation of bond number 1 the second bond may 
be located anywhere on a semicircle that is half of the 
great circle of which bond number 1 is the pole. Regard- 
less of the orientation of bond number 1, the semicircle 
is the same size; hence, all orientations of bond number 1 
are equally probable and all orientations of bond num- 
ber 2 are also equally probable. 

The same argument holds equally well for three bonds 
instead of two. This means that there is quite a range 
of distribution possible, from the distribution in which 
the bonds are always mutually perpendicular to the one 
in which they are random. Specification of the relative 
amounts of 2- and 3-coordinated ions in a free surface 
is not enough to describe the surface completely, and 
some other condition must be developed to specify the 
orientational distribution of the bonds. The most likely 
will be the condition that the surface layer has to be in 
equilibrium with itself, which means that the number 
of bonds breaking entirely within the layer is equal to 
the number reforming under whatever state of plane ten- 
sion or compression the layer adjusts itself to. This still 
remains to be investigated in much more detail. 
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